On the Average-Case Hardness
of
Total Search Problems

Chethan Kamath, Pietrzak Group

Thesis Defence, February 3rd, 2020

1/24

Outline

Total Search Problems
Motivation
Subclasses
Cryptography and Total Search Problems

Our Results
Summary
Techniques

Conclusion

2/24

ENGLISH IDIOM:

A needlein

a haystack
?

something that is
a4k very difficult
P to find

3/24

Needle in a Haystack, Guaranteed: Sperner's Lemma

(N, N)

{e o o}

1. Search problem
» exponential search-space, succinctly represented

2. Solution efficiently verifiable

3. Totality: existence of solution guaranteed

AR AN
IESEVANARERENN

(0,0)

4/24

Search Problems vs. Total Search Problems [MP91,P94]

F = Function All search problems‘

FNP = Functional NP Solutions efficiently verifiable‘

TFNP = Total FNP TFNP = FNP N co-FNP|

P R) 53 7
©c 000 e e e 6 | (119151 | |
o e e e e 00w 9.8 6
¢ s e 8 0 0 0 e 8 | 16 L3
© o e 0060 e 4 8 3 L

7 2 6
e e 0 ¢ e 0 0@ 6 208
© 0. 8009w 419 5
BINNKNN b

SORTING SPERNER SUDOKU

5/24

Subclasses of TFNP: Arguments of Existence

Pigeonhole Principle

Parity Argument

w/ e
vec P AP
> v 2 law

BROUWER
SPERNER

S -
Scissors
@ T @

6/24

PPAD: Polynomial Parity Argument on Digraphs

BROUWER

SPERNER

» Compete problem for PPAD: END-OF-LINE (EOL)
» NASH, BROUWER, SPERNER € PPAD [P94]
» They are also PPAD-complete [DGP05,CDT09]

7/24

END-OF-LINE

04: O
’PredecessorP >o/ o—><l) o

On

Parity on Digraphs

Input: A digraph on {0,1}" with in-/out-degree < 1
Guarantee: 0" is a source o

Solution: Any sink e

Problem: Instance easy if the whole digraph given as input
Succinct representation: Circuits S,P : {0,1}" — {0,1}"

vVvYyyvyy

8/24

Cryptography and TFNP

9/24

Cryptography and TFNP

TENDP
Input: N = pgq for large primes p, g
Solution: p or g

?

FACTORING

BROUWER

DISCRETE-LOG ®
SPERNER

» Goal: Come up with hard distribution on TFNP instances.
» Why? To defeat heuristics

> E.g.: Lemke-Howson algorithm and NAsH

» How? Reduce from cryptographic hardness assumptions

10/24

Cryptography and TFNP: What is known?

One-Way Functions (+)
[HNY17]

FACTORING
[BOO06,J12]

Code Obfuscation
[BPR15]

\

Alternative assumptions
[Thesis]

Hash Functions

One-Way Permutations
[P94]

BROUWER

SPERNER

11/24

Our Results
Summary
Techniques

12/24

Our Results

Input: N=pgand T €N
Solution: X2 mod N

/ ’Random function in the sky ‘ /

ITERATED-SQUARING + random oracle

BROUWER

[#SAT + random oracle[” 1\ " SN
N
Counting # of satisfying as-

signments to a SAT instance

» Theorem 1. EOL is hard-on-average relative to a random
oracle assuming ITERATED-SQUARING is hard [CHK+19a]

> : EOL is hard-on-average relative to a random

oracle assuming #SAT is hard (worst case) [CHK+19b]

13/24

Our Results...

‘#SAT + random oracle

‘ Soundness of Fiat-Shamir

Further strengthenings:
» | Theorem 2+ | EOL is hard-on-average assuming the
soundess of the Fiat-Shamir Transform for Sumcheck Protocol
» Theorems 1 and 2+ apply to CLS C PPAD [HY17]

» Contains interesing problems from game theory (e.g., Simple
stochastic games, mean payoff games) [FGMS19]

(3]

14/24

Techniques

Code Obfuscation
[BPR15]

BROUWER

SPERNER

©

15/24

Techniques...

Code Obfuscation
[BPR15]

‘#SAT + random oracle BROUWER

SPERNER

» Intermediate promise problem: SINK-OF-VERIFIABLE-LINE

» Step 1: Construct SVL from code obfuscation
» Step 2: Simulate EOL using reversible pebbling

> : SVL is hard-on-average relative to a random

oracle assuming #SAT is hard (worst case) [CHK+19b]

16/24

SINK-OF- VERIFIABLE-LINE (SVL)

Successor S(v) >0

’ V(v,2) = ACCEPT

i/.i\@

» Input: A digraph on {0,1}" with in-/out-degree <1
» Path starting at 0" defined by successor S : {0,1}" — {0,1}"
» Verifier circuit V : {0,1}" x [2"] — ACCEPT/REJECT

> Promise Verifier accepts (v, i) iff v =S(0")

» Solution: L-th vertex e

)L

i

17 /24

From #SAT to SVL: Verifiable Counting

PY o-»(f .<so|ution; {x : ¢(x):1}|‘

a,-:|{x<i:¢(x):1}><L é
m;: proof for o; O\(L
({ e O

0" e o o

Goal: reduce #SAT instance ¢(xi,...,x,) to SVL (S,V, L)
Attempt 1: Set /-th vertex as o;: # satisfying assignments < J

>
>
» Problem: No way to efficiently verify intermediate count
> Attempt 2: Append a proof 7;

>

Problem: getting m; to be small (i.e., poly(n))

18/24

From #SAT to SVL: Verifiable Counting...
o Q—>(f .< Solution: [{x : ¢(x) = 1}| ‘
oi=|{x <i:p(x) =1}

— i/% AN

» Problem: getting 7; to be small (i.e., poly(n))

> : use the Sumcheck Protocol [LFKN92]
» Problem: Sumcheck Protocol is interactive
> . use Fiat-Shamir Transform [FS86]

» Problem: next proof S(i,o;, 7)) = (i + 1,041, Ti+1)
> : recursive proof-merging
19/24

Total Search Problems
Motivation
Subclasses
Cryptography and Total Search Problems

Our Results
Summary
Techniques

Conclusion

20/24

Conclusion

FACTORING + fandemoracle _ /frereererfer)

ITERATED-SQUARING -+ tandem—oracte

‘#SA? + random oracle

‘ Soundness of Fiat-Shamir

» Theorem 1 FACTORING instead of ITERATED-SQUARING

» Theorem 1: Removing random oracle

> | Theorem 2|: Hardness in CLS/PPAD relative to random

oracle

21/24

B by 4 b3
Hunts Needle in a Haystack
HOW LONG does it take to find a needle in a hay-
stack? Jim Moran, Washington, D. C., publicity man,
recently dropped a needle into a convenient pile of
hay, hopped in after it, and began an intensive search
for (a) some publicity and (b) the needle. Having
found the former, Moran abandoned the needle hunt.

Desperate junkies search for an

rms - T

alleged “needle in the haystack.”

IT'S NO FUN PLAYING HIDE & SEEK
WITH YOU IF YOURE JUST GOING
TO KEEP JUMPING INTO THE MDDLE
OF THAT STUPID HAYSTACK
EVERY TIME IT'S YOUR TURN!

Thank you!

22/24

References

[BO06] Buresh-Oppenheim. On the TFNP complexity of
factoring. Unpublished

[BPR15] Bitansky, Paneth and Rosen. On the cryptographic
hardness of finding a Nash equilibrium. FOCS'15

[CDT09] Chen, Deng and Teng. Settling the complexity of
computing two-player Nash equilibria. JACM'09

[CHK+19a] Choudhuri et al.. PPAD-hardness via iterated
squaring modulo a composite. Unpublished.

[CHK+19b] Choudhuri et al.. Finding a nash equilibrium is no
easier than breaking Fiat- Shamir. STOC'19

[DGPO05] Daskalakis, Goldberg and Papadimitrou. The
complexity of computing a Nash equilibrium. SICOMP’09

[FGMS19] Fearnley et al.. Unique end of poten-tial line.
ICALP'19

23/24

References...

[FS86] Fiat and Shamir. How to prove yourself: Practical
solutions to identification and signature problems. Crypto'86
[HNY17] Hubatek, Naor and Yogev. The journey from NP to
TFNP hardness. ITCS'17

[HY17] HubaZek and Yogev.Hardness of continuous local
search: Query com- plexity and cryptographic lower bounds.
SODA'17

[J12] Jefabek. Integer factoring and modular square roots.
JCSS'16

[LFKN92] Lund et al.. Algebraic methods for interactive proof
systems JACM'92

[MP91] Megiddo and Papadimitrou. On total functions,
existence theorems and computational complexity. TCS'91
[P94] Papadimitrou. On the complexity of the parity
argument and other inefficient proofs of existence. JCSS'94

24 /24

	Total Search Problems
	Motivation
	Subclasses
	Cryptography and Total Search Problems

	Our Results
	Summary
	Techniques

	Conclusion

