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Needle in a Haystack, Guaranteed: Sperner’s Lemma
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1. Search problem

I exponential search-space, succinctly represented

2. Solution efficiently verifiable

3. Totality: existence of solution guaranteed
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Search Problems vs. Total Search Problems [MP91,P94]

Sperner

F = Functions All search problems

Chess

FNP = Functional NP Solutions efficiently verifiable

Sudoku

FP Easy

Sorting

TFNP = Total FNP TFNP = FNP ∩ co-FNP
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Subclasses of TFNP: Arguments of Existence

TFNP

FP

Pigeonhole

Pigeonhole Principle

Equal-Sums

Input: a1, . . . , an ∈ N :
∑

ai < 2n − 1
Solution: S 6= T ⊆ [n] :

∑
S ai =

∑
T ai

Parity

Parity Argument

Necklace-Splitting

Borsuk-Ulam

PPADParity on Digraphs
Nash

Brouwer
Sperner
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PPAD: Polynomial Parity Argument on Digraphs

TFNP
PPAD

FP

PPAD

EOL•
Nash•

Brouwer•
Sperner•

PPAD

I Compete problem for PPAD: End-of-Line (EOL)

I Nash,Brouwer,Sperner ∈ PPAD [P94]

I They are also PPAD-complete [DGP05,CDT09]
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End-of-Line

0n

Parity on Digraphs

v

Successor S(v)

Predecessor P(v)

I Input: A digraph on {0, 1}n with in-/out-degree ≤ 1

I Guarantee: 0n is a source •
I Solution: Any sink •
I Problem: Instance easy if the whole digraph given as input

I Succinct representation: Circuits S,P : {0, 1}n → {0, 1}n
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Cryptography and TFNP
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Cryptography and TFNP

TFNP
PPAD

FP

EOL•
Nash•

Brouwer•
Sperner•

PPAD

Crypto

Factoring •

Input: N = pq for large primes p, q
Solution: p or q

LWE •
Discrete-Log •

?

I Goal: Come up with hard distribution on TFNP instances.
I Why? To defeat heuristics

I E.g.: Lemke-Howson algorithm and Nash

I How? Reduce from cryptographic hardness assumptions
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Cryptography and TFNP: What is known?

TFNP

FP

PigeonholeParity

PPAD
EOL

Nash

Brouwer

Sperner

•
•
•
•

Factoring
[BO06,J12]

Hash Functions

One-Way Permutations
[P94]

One-Way Functions (+)
[HNY17]

Code Obfuscation
[BPR15]

Alternative assumptions
[Thesis]
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Our Results

PPAD

FP

EOL•
Nash•

Brouwer•
Sperner•

PPAD

Iterated-Squaring + random oracle

Random function in the sky

Input: N = pq for large primes p, q
Solution: p or q
Input: N = pq and T ∈ N
Solution: x2T mod N

#SAT + random oracle

Counting # of satisfying as-
signments to a SAT instance

I Theorem 1 : EOL is hard-on-average relative to a random
oracle assuming Iterated-Squaring is hard [CHK+19a]

I Theorem 2 : EOL is hard-on-average relative to a random
oracle assuming #SAT is hard (worst case) [CHK+19b]
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Our Results...

PPAD

FP

EOL•
PPAD

Iterated-Squaring + random oracle

#SAT + random oracle

Soundness of Fiat-Shamir

CLS

EOML•

Further strengthenings:

I Theorem 2+ : EOL is hard-on-average assuming the
soundess of the Fiat-Shamir Transform for Sumcheck Protocol

I Theorems 1 and 2+ apply to CLS ⊆ PPAD [HY17]
I Contains interesing problems from game theory (e.g., Simple

stochastic games, mean payoff games) [FGMS19]

[3]
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Techniques

TFNP

FP

PigeonholeParity

PPAD
EOL

Nash

Brouwer

Sperner

•
•
•
•

Factoring
[BO06,J12]

Hash Functions

One-Way Permutations
[P94]

One-Way Functions (+)
[HNY17]

Code Obfuscation
[BPR15]

Alternative assumptions
[Thesis]
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Techniques...

PPAD

FP

EOL•
Nash•

Brouwer•
Sperner•

PPAD
Code Obfuscation

[BPR15] SVL•1 2

#SAT + random oracle

I Intermediate promise problem: Sink-of-Verifiable-Line
I Step 1: Construct SVL from code obfuscation
I Step 2: Simulate EOL using reversible pebbling

I Theorem 2 : SVL is hard-on-average relative to a random
oracle assuming #SAT is hard (worst case) [CHK+19b]
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Sink-of-Verifiable-Line (SVL)

0n

v

Successor S(v)

V(v , 2) = ACCEPT

Solution

I Input: A digraph on {0, 1}n with in-/out-degree ≤ 1

I Path starting at 0n defined by successor S : {0, 1}n → {0, 1}n

I Verifier circuit V : {0, 1}n × [2n]→ ACCEPT/REJECT

I Promise Verifier accepts (v , i) iff v = Si (0n)

I Solution: L-th vertex •
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From #SAT to SVL: Verifiable Counting

0n

Solution: |{x : φ(x) = 1}|

iσi = |{x < i : φ(x) = 1}| i
σi = |{x < i : φ(x) = 1}|
πi : proof for σi

I Goal: reduce #SAT instance φ(x1, . . . , xn) to SVL (S,V, L)

I Attempt 1: Set i-th vertex as σi : # satisfying assignments ≤ i

I Problem: No way to efficiently verify intermediate count

I Attempt 2: Append a proof πi
I Problem: getting πi to be small (i.e., poly(n))

· · ·
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From #SAT to SVL: Verifiable Counting...

0n

Solution: |{x : φ(x) = 1}|

i
σi = |{x < i : φ(x) = 1}|
πi : proof for σi

· · ·
I Problem: getting πi to be small (i.e., poly(n))

I Solution: use the Sumcheck Protocol [LFKN92]

I Problem: Sumcheck Protocol is interactive

I Solution: use Fiat-Shamir Transform [FS86]

I Problem: next proof S(i , σi , πi ) = (i + 1, σi+1, πi+1)

I Solution: recursive proof-merging
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Conclusion

PPAD

FP

EOL•
PPAD

Iterated-Squaring + random oracle

#SAT + random oracle

Soundness of Fiat-Shamir

CLS

EOML•

Factoring + random oracle

Iterated-Squaring + random oracle

Factoring + random oracle

#SAT + random oracle

I Theorem 1 : Factoring instead of Iterated-Squaring

I Theorem 1 : Removing random oracle

I Theorem 2 : Hardness in CLS/PPAD relative to random
oracle
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Thank you!
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